Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Am Soc Nephrol ; 33(5): 936-947, 2022 05.
Article in English | MEDLINE | ID: covidwho-2141044

ABSTRACT

BACKGROUND: The ANCA autoantigens proteinase 3 (PR3) and myeloperoxidase (MPO) are exclusively expressed by neutrophils and monocytes. ANCA-mediated activation of these cells is the key driver of the vascular injury process in ANCA-associated vasculitis (AAV), and neutrophil serine proteases (NSPs) are disease mediators. Cathepsin C (CatC) from zymogens activates the proteolytic function of NSPs, including PR3. Lack of NSP zymogen activation results in neutrophils with strongly reduced NSP proteins. METHODS: To explore AAV-relevant consequences of blocking NSP zymogen activation by CatC, we used myeloid cells from patients with Papillon-Lefèvre syndrome, a genetic deficiency of CatC, to assess NSPs and NSP-mediated endothelial cell injury. We also examined pharmacologic CatC inhibition in neutrophil-differentiated human hematopoietic stem cells, primary human umbilical vein cells, and primary glomerular microvascular endothelial cells. RESULTS: Patients with Papillon-Lefèvre syndrome showed strongly reduced NSPs in neutrophils and monocytes. Neutrophils from these patients produced a negative PR3-ANCA test, presented less PR3 on the surface of viable and apoptotic cells, and caused significantly less damage in human umbilical vein cells. These findings were recapitulated in human stem cells, in which a highly specific CatC inhibitor, but not prednisolone, reduced NSPs without affecting neutrophil differentiation, reduced membrane PR3, and diminished neutrophil activation upon PR3-ANCA but not MPO-ANCA stimulation. Compared with healthy controls, neutrophils from patients with Papillon-Lefèvre syndrome transferred less proteolytically active NSPs to glomerular microvascular endothelial cells, the cell type targeted in ANCA-induced necrotizing crescentic glomerulonephritis. Finally, both genetic CatC deficiency and pharmacologic inhibition, but not prednisolone, reduced neutrophil-induced glomerular microvascular endothelial cell damage. CONCLUSIONS: These findings may offer encouragement for clinical studies of adjunctive CatC inhibitor in patients with PR3-AAV.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Papillon-Lefevre Disease , Antibodies, Antineutrophil Cytoplasmic , Cathepsin C/metabolism , Endothelial Cells/metabolism , Enzyme Precursors/metabolism , Humans , Myeloblastin/genetics , Neutrophils/metabolism , Papillon-Lefevre Disease/metabolism , Peroxidase
2.
BMC Nephrol ; 22(1): 411, 2021 12 11.
Article in English | MEDLINE | ID: covidwho-1571745

ABSTRACT

BACKGROUND: We report a case of a 25-year-old male patient, who developed acquired thrombotic thrombocytopenic purpura (aTTP) after receiving a first dose of mRNA-based SARS-CoV-2 vaccine Spikevax (mRNA-1273, Moderna Biotech, USA). While this is the first case in literature describing a case of aTTP after receiving the Spikevax vaccine, there are two other cases after mRNA-based Covid-19 vaccine and two after adenoviral SARS-CoV-2 vaccine. CASE PRESENTATION: The patient presented with persisting malaise, fever, headache, word-finding difficulties, nausea, vomiting, petechial bleeding, and hematuria 13 days after receiving a first dose of vaccination. Laboratory testing showed low platelet count, Coombs-negative hemolytic anemia, and mild acute kidney injury. We excluded vaccine induced immune thrombotic thrombocytopenia (VITT) as another important differential diagnosis and the final diagnosis was established after ADAMTS-13 (A Disintegrin And Metalloproteinase with a ThromboSpondin type 1 motif, member 13) activity was found to be < 1% (reference range > 40%) and ADAMTS-13 antibodies being 72.2 IU/L (reference range < 12 IU/L). We initiated empiric therapy of plasmapheresis and corticosteroids on admission and started caplacizumab the day after. The patient's thrombocyte count normalized 3 days after admission, hemolysis and acute kidney injury resolved after 2 weeks. The patient received 2 doses of rituximab (1 g each) after the diagnosis of immune TTP was established. One month after the initial presentation, the patient is in good overall condition, but still receives daily caplacizumab due to ADAMTS-13 activity of < 1%. CONCLUSIONS: Low platelet count after vaccination against SARS-CoV-2 has gained attraction after vaccine-induced immune thrombotic thrombocytopenia (VITT) has been described as a rare but severe complication of adenoviral-based vaccines. Thrombotic thrombocytopenic purpura (TTP) is an important differential diagnosis, but there are only few reports of TTP following SARS-CoV-2 vaccination. Despite pathophysiological and clinical differences of both entities, diagnostic uncertainty can result in the acute setting, since they share main symptoms such as headache and neurological alterations in addition to thrombocytopenia. In difference to other cases reported, this patient developed first symptoms of TTP as early as 4 days after vaccination, which suggests that vaccination merely acted as trigger for occult TTP, instead of truly inducing an autoimmunological process.


Subject(s)
2019-nCoV Vaccine mRNA-1273/adverse effects , COVID-19/prevention & control , Purpura, Thrombotic Thrombocytopenic/chemically induced , Adult , Humans , Male , Platelet Count , Purpura, Thrombotic Thrombocytopenic/therapy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL